A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM
نویسندگان
چکیده
Oblivious Transfer (OT) is a fundamental cryptographic protocol that finds a number of applications, in particular, as an essential building block for two-party and multi-party computation. We construct a round-optimal (2 rounds) universally composable (UC) protocol for oblivious transfer secure against active adaptive adversaries from any OW-CPA secure public-key encryption scheme with certain properties in the random oracle model (ROM). In terms of computation, our protocol only requires the generation of a public/secret-key pair, two encryption operations and one decryption operation, apart from a few calls to the random oracle. In terms of communication, our protocol only requires the transfer of one public-key, two ciphertexts, and three binary strings of roughly the same size as the message. Next, we show how to instantiate our construction under the low noise LPN, McEliece, QC-MDPC, LWE, and CDH assumptions. Our instantiations based on the low noise LPN, McEliece, and QC-MDPC assumptions are the first UC-secure OT protocols based on coding assumptions to achieve: 1) adaptive security, 2) optimal round complexity, 3) low communication and computational complexities. Previous results in this setting only achieved static security and used costly cut-and-choose techniques. Our instantiation based on CDH achieves adaptive security at the small cost of communicating only two more group elements as compared to the gap-DH based Simplest OT protocol of Chou and Orlandi (Latincrypt 15), which only achieves static security in the ROM.
منابع مشابه
Fast and Universally-Composable Oblivious Transfer and Commitment Scheme with Adaptive Security
Adaptive security embodies one of the strongest notions of security that allows an adversary to corrupt parties at any point during protocol execution and gain access to its internal state. Since it models real-life situations such as “hacking”, efficient adaptively-secure multiparty computation (MPC) protocols are desirable. Such protocols demand primitives such as oblivious transfer (OT) and ...
متن کاملEfficient, Adaptively Secure, and Composable Oblivious Transfer with a Single, Global CRS
We present a general framework for efficient, universally composable oblivious transfer (OT) protocols in which a single, global, common reference string (CRS) can be used for multiple invocations of oblivious transfer by arbitrary pairs of parties. In addition: – Our framework is round-efficient. E.g., under the DLIN or SXDH assumptions we achieve round-optimal protocols with static security, ...
متن کاملOn Black-Box Complexity of Universally Composable Security in the CRS Model
In this work, we study the intrinsic complexity of black-box Universally Composable (UC) secure computation based on general assumptions. We present a thorough study in various corruption modelings while focusing on achieving security in the common reference string (CRS) model. Our results involve the following: • Static UC secure computation. Designing the first static UC secure oblivious tran...
متن کاملSomewhat Non-committing Encryption and Efficient Adaptively Secure Oblivious Transfer
Designing efficient cryptographic protocols tolerating adaptive adversaries, who are able to corrupt parties on the fly as the computation proceeds, has been an elusive task. In this paper we make progress in this area. First, we introduce a new notion called semi-adaptive security which is slightly stronger than static security but significantly weaker than fully adaptive security. The main di...
متن کاملUniversally Composable Oblivious Transfer in the Multi-party Setting
We construct efficient universally composable oblivious transfer protocols in the multi-party setting for honest majorities. Unlike previous proposals our protocols are designed in the plain model (i.e., without a common reference string), are secure against malicious adversaries from scratch (i.e., without requiring an expensive compiler), and are based on weaker cryptographic assumptions than...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017